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I. COMPREHENSIVE ASSESSMENT OF RESEARCH RESULTS

During the contract period, a series of systematic comprehensive

diagnoses of Goddard Laboratory for Atmospheres (GLA) General Circulation

Model (GCM) simulation experiments have been performed in reference to

predictability and energetics of the Northern Hemisphere blocking circula-

tion. The simulation experiments performed at GLA in collaboration with GLA

scientists are as following:

GCM
Sea Surface Initial Simulation

No. (latitude x

longitude) Temperature Data Periods

i 4°x5 ° Jan. Climatology GLA 1/1/79-1/31/79

2 4°x5 ° Jan. Climatology GFDL 1/1/79-1/31/79

3 2°x2.5 ° Jan. Climatology GLA 1/1/79-1/31/79

4 2°x2.5 ° Jan. Climatology GFDL 1/1/79-1/31/79

5 4°x5 ° Daily updating GLA 1/1/79-1/31/79

6 2°x2.5 ° Daily updating GLA 1/1/79-1/31/79

7 2°x2.5 ° Daily updating GFDL 1/1/79-1/31/79

8 2°x2.5 ° Daily updating GLA 7/1/79-8/15/79

9 2°x2.5 ° July Climatology GLA 7/1/79-8/15/79

The comprehensive energetics study of Experiments 1-4 indicates that

formation of realistic winter blockings should be associated with the

barotropic wave-wave energy interaction with the upscale energy input at the

zonal wavenumber n-l. In the 3-dimensional normal mode expansion, the energy

transformations from the zonal baroclinic component, via the synoptic-scale

baroclinic component, to the planetary-scale barotropic component should also

be involved in developing the winter blocking. These in turn are influenced

by a number of factors, including model characteristics, boundary forcing,

grid resolutions, initial data, and others. These are reported in Kung,

Tanaka, and Baker (1989).

The difficulty in simulating a realistic blocking due to inadequate

wave-wave interaction is attributed in part to inadequate grid resolution,

and to the imbalance of the model and initial data. Among the four

simulations analyzed, the simulations by the high resolution GCM produce



realistically strong blockings with compatible energetics as in the

observations. In Tanaka, Kung, and Baker (1989), the increase of model

resolution is also found to reduce the prediction error in planetary waves
n-i and 2 of the barotropic component and in synoptic waves of the baroclinic

component.

In Kung, DaCamara, Baker, Susskind and Park (1990--KDBSP hereafter),

three additional numerical simulations, Experiments 5-7, were analyzed to

investigate the response of blocking development to the realistic sea surface

temperature (SST) distribution, which was continuously updated daily with

observed SSTs during the period of simulation. A significant improvement in

the blocking formation and forecast skill is apparent in the simulations by

the high resolution GCM with daily updating SSTs during the simulation.

As it is clearly illustrated that the updating of SSTs improves the

formation of winter blocking, it is particularly noteworthy that following

the Pacific blocking, toward the end of January 1979, another strong blocking

is formed over the Atlantic Ocean in Exp-6, resembling the observation. This

is consistent with the considerable forecast skill in the Atlantic sector in

late January. The high skill score later in the month is obtained when the

ultralong waves dominate the Northern Hemisphere circulation during the

Atlantic blocking. In KDBSP (1989) it is shown that the observed blockings

in the Pacific and Atlantic can be described as the composite of wavenumbers

I and 2. The high pressures embedded in n-I show a relatively steady

pattern, but those in n-2 undergo latitudinal migration, although their

longitudinal position does not appreciably change. Superimposition of the

migrating n-2 on a steady n-i creates manifestations observed as blocking,

further suggesting the extended forecast skill of blocking development is in

fact that of ultralong waves.

The high resolution GCM is able to realistically produce the first

(Pacific) blocking episode through the upscale kinetic energy input into the

ultralong waves by the wave-wave interaction (Kung, Tanaka, and Baker 1989).

Since the development of blocking immediately follows the initialization of

the GCM, we may assume the existence of an adequate amount of spatial

distribution of baroclinic energy within initial data. For the second

(Atlantic) blocking event toward the end of the simulation period, however,

the required source of baroclinic energy must be provided by some other



means. This suggests that the realistic ocean surface heating may provide

an adequate baroclinlc energy source during the simulation. Thus the GCM is

able to produce a realistic second blocking even after the effects of

initialization are presumably lost.

In the continuing study of long-range simulations of the atmosphere

(Kung, DaCamara, Susskind, and Park 1991), the high resolution GLA GCM was

integrated with daily updating SSTs for a 45-day period from I July to 14

August 1979. With the updating SSTs, the forecast skill is high throughout

the simulation period when waves of n-4, 5 and 6 intensify. The results of

this simulation and previous winter simulations with the daily updating SSTs

could indicate the upper limit of what would be possible with a coupled

ocean-atmosphere model, since the observed SSTs during the atmospheric model

integration may imply a correct ocean model prediction of SSTs. The

comparison of summer experiments with winter experiments indicate that during

the summer the simulation of n-4, 5 and 6, rather than that of ultralong

waves, is critical. The importance of the baroclinic process also increases

its importance as synoptic waves respond more directly to the ocean-

atmosphere boundary heating without input to the planetary-scale waves. This

should be a fundamental difference between the winter and summer seasons in

the development of long-range GCM integration.

The progress of research and development has been reported periodically

on the semi-annual basis. The details of these are described in Section 4

of this report.
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3. CONCLUSIONS AND RECOMMENDATIONS

The systematic diagnoses of the series of GLA GCM simulations indicate

a considerable predictability of winter and summer blocking phenomena in the

Northern Hemisphere if the numerical integrations of GCM are performed under

proper given conditions. A high resolution GCM is needed to have adequate

wave-wave interaction in case of winter blocking simulations to amplify the

planetary waves, particularly that of n-l. The daily updating of SSTs during

the simulation is shown to be critical in producing the second major winter

blocking during a one-month simulation period. This may be interpreted to

mean that the SST updating provides a necessary updating of the initial data

at least for the boundary forcing. This may also be seen as an indication

of a possible extension of forecast skill with future coupled ocean-

atmosphere GCMs through correct ocean model SST prediction.

The obvious success in a 45-day summer simulation with updating SSTs

may well suggest the much longer predictability in GCM integration than we

currently assume. As the key to future development of forecast skill is to

have proper SST prediction or updating during the simulation, it is also

noteworthy that the winter and summer blockings are different in nature, the

former being barotropic and the latter baroclinic. This suggests that the

winter and summer simulation may be developed separately with proper

conditions of simulations for barotropic and baroclinic processes.

Throughout our diagnosis, it is apparent that the blocking phenomena

are ideal targets to be attained in the development of long-range forecast.

Blo_kings are quasl-stationary phenomena in the general circulation, and thus

well defined synoptically. They possess longer predictability than other

transient phenomena. Continued research is recommended to systematically

investigate the utilities of SSTs in long-range forecasting both with the GCM



simulation and with the empirical multiple-regression scheme.

In the next phase of study at least three cases of regression

forecasting shall be selected for comparison with the GCM simulations, in

which the SST dependency of regression forecasting is most apparent.

Parallel numerical simulations of these cases shall be conducted using the

2°x2.5 ° GLA Phoenix GCM, during which SSTs will be updated daily with the

observation data. The GCM integration will be extended beyond one month to

a season until the forecast skill of ultralong waves significantly deterio-

rates. The circulation patterns and dynamics-energetics of numerical

simulations will be analyzed to relate the predictors and predictands in

regression forecast through the evolution of the general circulation. Using

the analysis of simulation experiments the possibility of eventual long-range

forecasting by coupled ocean-atmosphere models will be studied.

4. TECHNICAL DETAILS OF ACCOMPLISHED RESULTS

Technical details of accomplished results are presented in the form of

publication as following: 4.1 and 4.2 copies of reprints, and 4.3 in a

prepublication form.



4.1 Energetics examination of winter blocking simulations

in the Northern Hemisphere
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ABSTRACT

Four numerical simulations of the global atmosphere for January 1979are analyzed to study the formation
of blocking in terms of Northern Hemisphere energetics. The Goddard Laboratory for Atmospheres (GLA) 4*
× 5° latitude-longitude grid general circulation model (GCM) and 2° × 2.5* grid GCM are employed with
the GLA and Geophysical Fluid Dynamics Laboratory (GFDL) initial datasets.

The di_culty in simulating a realistic blocking due to inadequate wave-wave interaction can be attributed
in pan to inadequate grid resolution. Among four simulations, the simulations by the high resolution GCM
producerealisticallystrong blockings with compatible spectral energetics as in the observed blocking episodes.
The latitude-height cross sections of the energy variablesof wavenumber I is presentedto describe the dipole
structure of blockings. Blocking development is also examined in time series of barotropic and baroclinic com-
ponents of energy and associated conversions.

1. Introduction

The winter in the Northern Hemisphere is often

dominated by a sequence of blocking events, and the
ability of general circulation models (GCMs) to sim-
ulate blocking is a major concern in producing rea-
sonably accurate short to medium-range forecasts (e.g.,
Bengtsson 1981; Miyakoda et al. 1983). In Kung and
Baker (1986) we compared encrgetics features asso-
ciated with observed and simulated blocking situations
in the Northern Hemisphere winter. The observed
blockings are developed and maintained by the non-
linear transfer of kinetic energy through the wave-wave
interaction L(n) from cyclone-scale waves to ultralong
waves. The cyclone-scale energy source is provided by
baroclinic conversion C(n) from available potential
energy to kinetic energy. The simulation, which fails
to produce pronounced blocking, converts available
potential energy to kinetic energy at all wave ranges.
However, the converted energy is either cascaded down
to short waves through L(n) or fed to the zonal mean
component through wave-mean interaction M(n)
without building up the kinetic energy of ultralong
waves.

* Present af_liation: Geophysical Institute,University of Alaska--
Fairbanks.

Corresponding author address. Dr. Ernest C, Kung, Dept. of At-
mospheric Science, University of Missouri--Columbia, Columbia,
MO 6521 I.

Our finding on the importance of wave-wave inter-
action in blocking development agrees with Saltzman's
(1959) earlier proposal that the large-scale quasi-sta-
tionary flow systems are m/aintained by a nonlinear
barotropic transfer of kinetic energy from smaller cy-
clone-scale disturbances which have baroclinic energy
sources. It is also consistent with Hansen and Sutera's

(1984) report on the necessity of nonlinear wave-wave
interaction in supporting the kinetic energy of block-
ings, and also with Holopainen and Fortelius' (1987)
study which demonstrated that the barotropic energy
transfer, from the high-frequency eddies to the time-
mean flow, is very strong during the blocking episode.
In our recent energetics diagnosis of the observed gen-
eral circulation in three-dimensional normal mode ex-

pansions (Tanaka and Kung 1988), it is shown that
an upscale energy cascade during the development of
winter blocking in the Northern Hemisphere is accom-
panied by energy transformation from baroclinic to
barotropic components. Since blocking is often char-
acterized by its barotropic structure, the barotropic and
baroclinic decomposition of normal mode energetics
provides additional means for the diagnosis in the zonal
wavenumber domain.

It is noted that the separation of energy variables
into the standard zonal mean and eddy components
does not always permit the simple interpretation of the
energetics mechanisms, particularly for a local synoptic
system. During the blocking period a distinct local
manifestation of the hemispherical circulation is ap-
parent in and around the blocked region. However,

© 1989 American Meteorological Society
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from the viewtx_int ofthe general circulation, the major
blocking such as the Atlantic or Pacific blocking during
the winter is not a local system. As shown in Kung and
Baker (1986) the development of the Atlantic or Pacific
blocking is manifested in n -- 1, and that of the con-
current two blockings in the Atlantic or Pacific in n
= 2. During January 1979, the month for which the
simulations are analyzed, a typical Pacific blocking was
formed in the early part of the month, and a typical
Atlantic blocking followed toward the end of the
month. Such a large blocking would permit the spectral
diagnosis to reveal essential mechanisms of blocking
even though it is a case analysis. The hemispherical
nature and scale of the major winter blockings will also
be demonstrated throughout this paper. The main ob-
jective of this paper is to diagnose the blocking simu-
lation in the context of the energetics of the general
circulation. A diagnosis of the local energy budget
would be desirable; however, this approach will be left
for a future study.

Since the simulation failure of winter blocking is
attributable to the improper nonlinear wave-wave in-
teraction of kinetic energy in building up the barotropic
energy of ultralong waves, it is interesting to see how
various simulation conditions affect this part of the
energy process. In this study, four numerical simula-
tions of the global atmosphere for January 1979 are
analyzed in terms of their Northern Hemisphere ener-
getics. The Goddard Laboratory for Atmospheres
(GLA) standard 4 ° X 5 ° latitude-longitude grid GCM
and high resolution 2 ° × 2.5* grid GCM are employed
for blocking simulation, each with the GLA and Geo-
physical Fluid Dynamics Laboratory (GFDL) initial
datasets for 0000 UTC 1 January 1979. The develop-
ment ofblocking is identified, and its extent and pattern
examined, for each simulation. Through intercompar-
ison among simulations and comparison with obser-
vations by Kung and Baker (1986) and Tanaka and
Kung (1988), an energetics assessment is performed
for these simulations. The standard spectral energetics
in the zonal wavenumber domain and three-dimen-
sional normal mode energetics are both used in this
study to supplement each other.

2. Simulation experiments and datasets

Four simulation experiments (Expts. 1, 2, 3 and 4)
were conducted for the period of 1-31 January 1979
with the GLA standard and high resolution GCMs (see
Table 1 ). The GLA and GFDL gridded analyses of the
First GARP (Global Atmospheric Research Program )
Global Experiment (FGGE) at 0000 UTC 1 January
were used as the initial data (see Daley et al. 1985;

Kung and Baker 1986). The mean January climatology
of the sea surface temperature was used in all four sim-
ulations.

The standard coarse resolution GLA GCM used in
simulation experiments is the fourth-order global at-

TABLEI. Four simulationexperimentsof the January 1979global
atmosphere with GLA GCMs, and blocking episodes identified in
the observed and simulated Northern Hemisphere circulation. The
observed periods are after Kung and Baker(1986).

1/1/79 Blocking
GCM grid 0000 UTC period

(latitude × longitude) initial data (day/mo/yr)

Observation -- -- 5/1-14/1/79
15/I-29/1/79

Expt. 1 4* × 5* GLA 10/1-14/I/79
Expt. 2 4* x 5* GFDL 9/I-13/1/79
Expt. 3 2* × 2.5* GLA 4/I-13/1/79

22/1-26/1/79
29/1-31/I/79

Expt. 4 2* × 2.5 ° GFDL 8/1-11/1/79

mospheric model described by Kalnay-Rivas et al.
(1977) and by Kalnay et al. (1983). There are nine
vertical layers equal in sigma with a uniform nonstag-
gered horizontal grid of 4 ° latitude by 5 ° longitude. It
is based on an energy conserving scheme in which all
horizontal differences are computed with fourth-order
accuracy. A 16th-order Shapiro (1970) filter is applied
every 2 hours on the sea level pressure, potential tem-
perature, and wind fields. In this scheme, wavelengths
longer than four grid lengths are resolved accurately
without damping. Wavelengths shorter than four grid
lengths, which would otherwise be grossly misrepre-
sented by the finite differences, are filtered out while
they are still infinitesimal. The 2 ° latitude by 2.5 ° lon-
gitude version (high resolution version) of the GLA
GCM is identical to the coarse resolution version with

respect to the physical parameterizations. The timestep
of the hydrodynamics is 3.75 rain in the high resolution
version compared to 7.5 min in the coarse resolution
version and an eighth-order Shapiro (1970) filter is
used rather than the 16th-order filter used in the coarse
resolution model.

The GLA analysis scheme (Baker 1983) used to
produce initial conditions for Expts. 1 and 3, as sum-
marized in Daley et ai. (1985), employs a univariate
successive correlation method for the height, horizontal
wind components, and relative humidity on pressure
surfaces. All of the analyses are smoothed and then
analysis-minus-first-guess differences are interpolated
to the model sigma levels. The assimilation procedure
involves the intermittent analysis of batches of data
grouped in a _+3 h window about each synoptic time.
The wind and height fields are updated independently
without any explicit coupling or balancing. In contrast
to the GLA approach, the GFDL assimilation proce-
dure employs a spectral, rhomboidal 30, 18 level, gen-
eral circulation model with continuous data insertion

at every time step. The objective analysis scheme used
to provide the initial conditions for Expts. 2 and 4,
(see Daley et al. 1985), utilizes a univariate optimum
interpolation procedure on pressure surfaces. Nonlin-
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ear normal mode initialization is applied every 6 hours

during the assimilation.
The four simulation datasets and GLA gridded data

of the FGGE observations analyzed in this study in-

clude twice-daily values of geopotential height, tem-
perature, humidity, horizontal wind and vertical ve-
locity at 0000 and 1200 UTC, which are given on the
4 ° × 5° latitude-longitude grid at I000, 850, 700, 500,
400, 300, 250, 200, 150, 100, 70, and 50 mb at 0000
and 1200 UTC.

3. Scheme of analysis

Table 2 lists symbols, definitions, and variables used
in this paper. The computational analysis of the stan-
dard spectral energetics in the zonal wavenumber do-
main is based on Saltzman's ( 1957, 1970) formulation

of equations of kinetic energy:

OK(O) '_
- _ M(n) + C(O) - O(O) (1)

Ot
¢1=1

OK(n__._)= -M(n) + L(n) + C(n) - D(n),
Ot

n 4: 0. (2)

Equations ( 1) and (2) state the balance requirement
over the total mass of the atmosphere in a closed do-

main. In this study, transformation terms are obtained
so that the energy equations also hold at each point in
the meridional-height cross section. This is done by
the use of the advective form instead of the convergence

form in computing the nonlinear interaction terms
M(n) and L(n), and also by replacing C(n) with
-V. V 4, at n. For the discussion of baroclinic conver-

sion, C(n) is computed explicitly with the vertical mo-
tion and specific volume. In computing spectral ener-
getics over the Northern Hemisphere, the energetics
variables evaluated in the meridional-height cross sec-
tion are integrated over the Northern Hemisphere. The
dissipation terms D(n) of kinetic energy in Eqs. (1)
and (2) are obtained as residual terms to balance the
respective equations. The maximum wavenumber
computed for energy _ariables is n = 36.

The analysis scheme of normal mode energetics is
based on Tanaka (1985) and Tanaka and Kung
(1988). The equation of total energy, E = K + P for
a component of three-dimensional normal mode ex-
pansion may be written as

OE.l,./Ot = ,4.t,. + B.t,. + F_,.. (3)

The total energy pertaining to m = 0 is defined as baro-
tropic energy, whereas the sum of the energy for m
4= 0 is baroclinic energy. The maximum vertical in-
dex computed is rn = 10. The construction of basis
functions for very small equivalent height beyond m
= 10 is very difficult and quite unpredictable. A total

TABLE 2. Symbols, definitions/arM va/'iables.

l

P

P,
V

//

t)

n

1
m

h,.

w.l=
V

g
Po

H

1

Z

z(n)

K(n)

m(n)
L(n)

C(n)
D(n)
-V- V_I,

K
P

E

B

A

F

ERR

time

pressure
constant surface pressure
horizontal wind vector

zonal wind speed

meridional wind speed

geopotential
zonal wavenumber

meridional index .,

vertical index

equivalent height for ruth vertical index
three-dimensional spectral expansion coetficient

horizontal del operator along an isobaric surface

sigma (p/p,) ....

acceleration of gravity
basic density ,, ,_ _...... '- mr ,, * ,_

scale height of the isothermal atmosphere ' ,
longitude _ _ _:" :_ ""'_

blocking index as defined i_,_4) .... , -
geopotential height of the 500 mb surface

geopotential height at wavenumber n norlnalized by
the factor a m "'

kinetic energy at wavenumber.n

transfer of K(n) to K(0) where,n # 0 "" '

transfer of eddy kinetic energy from all other
wavenumbers to K(n) where n 4, 0

conversion of P(n) to K(n)

dissipation of K(n)
production of kinetic energy by cross-isobaric motion

kinetic energy over the total mass of the atmosphere

available potential energy over the total mass of the

atmosphere

total energy, K + P
nonlinear interaction of K
nonlinear interaction of P

net energy source and sink due to diabatic processes
over the total mass of the atmosphere

error variance for simulations

of 50 meridional indices are used in this study, includ-
ing 26 Rossby modes, 12 eastward gravity modes, and
12 westward gravity modes, which are sufficient to de-
scribe the large-scale energy characteristics (see Tanaka
1985). The zonal wavenumber n is truncated at n = 15.
Surface wind at p = p_ has been assumed to vanish as
in Tanaka and Kung (1988).

Using the method of normal mode expansion, we
can assess the forecast error in the simulated atmo-
sphere by the distance between the spectral expansion
coefficients of observation w,t,, and simulation v_,/,,,,
where the caret designates variables for simulations.
The error variance ERR in simulations may be given
as a sum of the following quantities of the normal mode
expansion:

ERRor,,, = -_p_h,,,Iw,t,,, - w_t,,I 2. (4)

A dimensional factor psh,,, is used so that the error vari-
ance has physical units of J m -2. By means of the
inverse transforms of vertical and Fourier-Hough
transforms, it may be shown that the sum of ERR,tin
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0000 UTC 500 mb charts. Bold lines are for blocking. Dot--dashed lines are for observed blockings after Kung and Baker (1986),

has the same form as total energy E = K + P, in which

the dependent variables u, v, and (I, have been replaced
by t_ - u, 0 - v, and (I, - (I,.

For energetics analysis over the Northern Hemi-
sphere, the basic variables are expanded in the vertical
normal modes and zonal harmonics without further

expansion in Hough functions. The energetics variables
of barotropic and baroclinic components are then in-
tegrated over the hemisphere. In this case spectral
components of cross-equatorial flux are involved in
the energy balance. However, it has been confirmed

(Kung 1988 ) that contributions from such cross-equa-
torial flux are negligibly small in the observed atmo-
sphere except for n = 0. This situation is also the same
for all simulations in this study. Unless stated otherwise,
the results ofE,_m, A,,tm and B_,, in this study are com-
puted based on the Northern Hemisphere data.

Standard spectral energetics for the observed block-
ing situation as compared with simulations in this study
are adopted from Kung and Baker (1986), and the
normal model energetics from Tanaka and Kung
(1988). Additional energetics computations for the
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observed circulation as needed is performed with the

GLA gridded analysis of the FGGE observations.

4. Simulated blockings and spectral energetics

Following the procedures of Kung and Baker ( 1986 ),
the longitudinal width of significant ridges in the 46 °-
66°N belt are identified with the daily 500 mb charts
of the simulated circulation in Figs. t-4 for the four
simulations. The horizontal segments in the longitude-
time diagrams represent the longitudinal sector, in
which the westerly flow is interrupted because of the

presence of ridges. The blocking cases are further iden-
tified as bold lines for these longitudinal sectors. A

blocking is recognized when the following index I at
longitude _, is greater than 50 m along the longitudinal
sector in the figures:

I(X) = Z(X, 66°N)- Z(X, 46°N) (5)

where Z is the geopotential height at 500 rob. This
criterion is based on the common characteristic ofdif-

fluent and meridional types of blocking. In both types
of blocking, a quasi-meridionai dipole is formed by a
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high pressure cell poleward and a low pressure area
equatorward (see Lejen_is and Okland 1983). For the
cases of tilted orientation of meridional dipole, and
cases of blocking which are partially out of the chosen
latitudinal band, Z(_, ___5 °, 66°N) is substituted for
Z(X, 66°N) in Eq. (5) in the additional scan of the
circulation pattern. The blocking identification in this
method is verified to be consistent with the results of

careful manual inspection of the flow pattern (see Kung
and Baker 1986). Figures !-4 also contrast the simu-
lated blockings with the observed blockings by Kung
and Baker which are shown with dot-dashed lines.

The periods of identified blocking episodes in the
Northern Hemisphere are listed for the four simulations
and compared with those of the observed episodes in
Table 1. Comparing the simulated blockings with those
observed for their latitudinal locations (Figs. 1-4) and
periods (Figs. 1-4 and Table l), it is apparent that
there is a considerable difference between the simula-

tion and observation and among the four simulations.
The simulations in Expts. 1 and 2 have much shorter
blocking periods than the observation. The longitudinal
extents of the simulated blockings are more limited
than the observation, and some dislocation of blocks
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is apparent. Figures 5 and 6 verify that the Pacific
blocking episodes in Expts. 1 and 2 are much weaker
than those of the observation and Expts. 3 and 4. The
circulation patterns in Figs. 5 and 6 are for a 5-day
period synchronized at 9-13 January. Among the sim-
ulations, Expts. 3 and 4 by the high resolution GCM
were able to generate realistically strong blocking. Expt.
3 is noted for its large amplitude of blocking, and Expt.
4 for its close resemblance of the phase of the block to
that of the observation. Figure 3 also indicates that
Expt. 3 produced another blocking episode toward the
end of the simulation period although the block is dis-

located to the east of the observed block. This is a dis-
tinct contrast to the other three simulations in that it
was able to amplify the ultralong waves through the
entire l-month period of simulation.

Figure 7 illustrates the error variance growth of the
simulations for zonal eddies (n = 1-15 ) starting from
the initial data of 0000 UTC 1 January. The GFDL

analyses of the FGGE are used to represent the ob-
served atmosphere for evaluating the prediction error
in model simulations. For comparison, the persistence
error is presented starting from the same date. The
persistence error reaches its saturation level around



2026 MONTHLYWEATHERREVIEW VOLUMEIt7

90E

180 t0

OOW

Observation O0 QMT 9-13 Jan79

FIG. 5. Observed 5-day mean 500 mb circulation
during the Pacific blocking.

days 4 to 6. In contrast, the simulation error energies
reach their saturation levels around 8 to 10. Evidently,
the high resolution models (solid line) perform better
compared to the low resolution models (dotted line).
According to Dalcher and Kalnay (1987), the dynam-
ical predictability of a model is determined by the day
when the error energy reaches 95 percent of the satu-
rated level. Growing prediction errors show the pre-
dictability limits of GLA model simulations at about
7 to 10 days for Expts. I to 4.

The circulation patterns of simulations, as shown in
Fig. 6, indicate certain predictability of GCMs in
blocking formation during the period of 9-13 January.
In particular, Expts. 3 and 4 by the high resolution
GCM formed a clear, major blocking in the Pacific
which is comparable with the observation. This seem-
ing inconsistency with the forecast skill, as shown in
Fig. 7, may be explained by a scale dependency of pre-
dictability in the atmospheric circulation. Bengtsson
(1981) found that the atmospheric predictability in-
creases in a blocking situation. Shukla's ( 1981 ) study
indicated that ultralong waves possess considerable ex-
tended predictability (up to 30-45 days) when com-
pared to shorter waves. This is confirmed collectively
by contributors in Hoiloway and West (1984). Since

the prediction error variance in Fig. 7 is for the sum-
mation ofzonal eddies n = 1-15, it indicates the pre-
dictability of the total field of motion rather than that
of ultralong waves which are responsible for blocking
formation. From Fig. 7 it is apparent that Expt. 4 was
the best of the four simulations of the Northern Hemi-

sphere circulation after the error energy reached a sat-
uration level. Presumably, however, due to extended
predictability of ultralong waves, Expt. 3 was also able
to form a distinct blocking pattern over the Pacific.

The baroclinic conversion C(n), wave-wave inter-

action L(n), wave-mean interaction _,l(n), and dis-
sipation D(n) over the Northern Hemisphere for the
observed circulation and four simulations are listed in

Table 3 for n = 1-36 for the period 5-9 January 1979
when the blocking is in the developmental stage. These
four transformation variables determine the eddy ki-
netic energy blance of individual wavenumbers. Kung
and Baker (1986) showed that the change in the avail-
able potential energy occurs following the blocking de-
velopment rather than preceding the blocking. This is
consistent with the basically barotropic nature of
blocking development, and the budget of available po-
tential energy needs not be examined in this study in
connection with blocking development.

It is apparent that the resemblance between ener-
getics is stronger for the two high resolution simulations
than for the two low resolution cases. Both Expts. 3
and 4 show large L( 1 ) as in the observed blocking. In
contrast, Expts. 1 and 2 have significantly weak L( 1 )
and large energy input at the shortwave range L( 11-
36 ). It is also apparent that in the high resolution sim-
ulations, Expts. 3 and 4, an upscale input to n = 1 is
provided through the wave-wave interaction L( 1 ) from
the source at the synoptic-scale range, including the
contribution from L(3) and L(4). Although L(1) in
Expts. 3 and 4 is large, it is still smaller than that in

the observation, whereas L(2) is noticeably larger. In
comparing Expts. 3 and 4, Expt. 3, with the GLA initial
data, seems to provide better energy input at n = 1. As
in the observation, Expts. 3 and 4 show positive values
of L(5), but they are smaller than that in the obser-
vation. In the computation of L(n) no adjustment is
made to ensure the balance among wavenumbers. It
is seen that the values of L(1-36) in the observation
and Expt. 3 are reasonably small, whereas those in
Expts. I and 2 are very large. The large residual values
of L(1-36) are attributable to the fact that the inte-
gration is only for the Northern Hemisphere, and also

to the application of Shapiro (1970) filtering in the
model integration, which will result in an inconsistency
of simulation data with diagnostic equations. These
effects are apparently minimized in Expt. 3.

The wave-mean interaction M(n) as shown in Table
3 seems to indicate that its spectral distribution is af-
fected by the initial data. For Expts. 1 and 3 with the
GLA initial data a comparable wave-mean interaction
with the observation at the synoptic and shortwave
range n = 5-36 is indicated. When the GFDL data are
used to initialize the high resolution GLA GCM in
Expt. 4, a very large flow of kinetic energy from eddies
to the zonal mean motion is observed at n = 3 and 6-
10, an obvious distortion of energy flow in view of the
observed values. This may have prevented a stronger
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FIG. 6. As in Fig. 5, but for the four simulations.

input in Expt. 4 at n = 1 as shown in a relatively weak
L(I ) in comparison with that in Expt. 3. It appears
that the model influence contained in the initial data
may amplify in a GCM integration, particularly when
the high resolution GCM is used in simulation.

There is a sufficient baroclinic conversion C(n) in
all simulations to provide the energy source for baro-
tropic processes of L(n) and M(n). The simulations

actually generate more kinetic energy than the obser-
vations, which is enhanced in the high resolution sim-
ulation. The C(1-36) in Expts. 3 and 4 is more than
30% higher than in the observation. There are some
notable differences in C(n) at the ultralong-wave range
among simulations. However, the patterns in this are
not identified with any specified differences among ex-
periments. All simulations have more than enough
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baroclinic energy sources, but the barotropic part of

transformations tend to fail to provide as much kinetic

energy input at n = 1 as in the observation.

The value D(n) obtained as the residual term of Eq.

(2), which is customarily referred to as dissipation,

represents the sink of kinetic energy from the specified

scale n. Thus D(n) can be any process ofenergy cascade

by the scales of motion that cannot be observed with

the given grid resolution. All four simulations differ

from the observation in their respective spectral dis-

tribution of D(n). While the observation shows its

maximum dissipation at n -- 2 and 3, the simulations

have their large dissipation in the shorter wave range

n = 6-36. It is particularly noteworthy that the simu-

lations with the coarse grid GCM, Expts. 1 and 2, have

a very high dissipation at the shortwave range of n

= 11-36. This is consistent with the fact that these

simulations generate unduly intense circulation at

shortwave range (see Baker and Brin 1985), which

shows a marked improvement with the high resolution
GCM.

From the listing of eddy kinetic energy transfor-

mations, it is apparent that the failure in simulating

the realistic blocking can be attributed in part to in-

adequate grid resolution. The coarse 4 ° × 5 ° grid of

the standard GLA GCM results in the downscale en-

ergy cascade, preventing a proper upscale input at n
= I. It is also shown that the differences in initial da-

tasets obviously result in differences in the spectral

energetics. The high resolution GLA GCM with the

GFDL initial data produced excessively strong wave-

mean interaction, which may have prevented the wave-

wave interaction L( 1 ) from reaching a level close to

that of the observation. It is relevant to point out that

the spectral energetics obtained in this study are for

the entire Northern Hemisphere. Our ongoing study

indicates that the energetics budget acquired for a lim-

ited latitudinal belt of blocking formation, is compa-

rable to that of the Northern Hemisphere, and the

energetics characteristics, as discussed above, will be

seen more clearly.

5. Dipole structure

The widely recognized common characteristic of the

blocking situation is the quasi-meridional dipole struc-

ture, as shown in Fig. 5 in connection with the fully

developed Pacific blocking. In the zonal spectral analy-
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"[ABLE 3. Transfer of eddy kinetic energy by eddy conversion C(n), wave-wave interaction L(n), wave-mean interaction M(n), and

dissipation D(n) over the Northern Hemisphere in the observed and simulated circulation for the period 5-9 January 1979. The observed

values are taken from Kung and Baker ([986). Units are l0 -2 W m -2.

Datasets CI 1) (?(2) C(3)
Observation 2 50 64

Expt. l -5 20 20

Expt. 2 27 8 56

Expt. 3 18 29 30

Expt. 4 6 50 75

Datasets L(1) L(2) L(3)

Observation 67 2 -25

Expt. I 24 -1 -30

Expl. 2 16 29 -48

Expt. 3 52 10 -33

Expt. 4 42 6 -22

Datasets M( 1) M(2) M(3)
Observation 19 -5 2

Expt. I -3 -4 8

Expt. 2 8 -6 9

Expt. 3 8 -6 1
Expt. 4 l0 -4 40

Datasets D( I ) /9(2) D(3)
Observation 31 73 69

Expt. 1 22 17 25

Expt. 2 20 22 31
Expt. 3 34 35 30

Expt. 4 28 41 28

C(4) (?(5) (?(6-10) C(I 1-36)
30 41 99 30

44 80 153 73

37 34 155 74

59 64 151 70

50 45 149 57

L(4) L(5) L(6-10) L(11-36)
-22 26 -56 7

-_3 -16 -50 17

-18 -I1 -68 23

-18 10 -25 9

-22 8 -11 I6

M(4) ,h4(5) M(6-10) M(ll-36)
0 16 15 -2

4 25 15 -3

2 5 8 -2
12 21 19 l

13 2 41 3

/9(4) /)(5) D(6-10) /3( l 1- 36)
26 28 44 38

21 20 69 140
24 15 84 132

31 40 86 89

18 30 76 76

C(1-36)
316

385

391
421

432

/.(1-36)
-1

-69

-77

5

17

M(1-36)
45

42

24

56
105

/9(1-36)
309
314

328

345

297

sis of the isobaric height field of the observed circula-
tion, this dipole structure is apparent as the amplitude
maxima for n = 1 at 45 ° and 75°N, as shown in the
latitude-height cross section of Fig. 8, but not for other
wavenumbers. The cross section is for the period 7-

11 January when the Pacific blocking is in its full de-
velopment. The hemispherical scale of this blocking
episode is confirmed by the fact that its structure is
adequately described by n = 1, as shown in Fig. 8. To
remove the effects of the density stratification at high
altitudes, which results in the large amplitudes of the
geopotential andwind fields, the vertical structure of
geopotential he;ight is multiplied by a _f2 where o
= P/Ps, and those of energy and energy transforma-
tions with the basic density of p0 = p(gH) -_ where
H = 8000 m (see Matsuno 1970) in the latitude-height
cross sections shown in this paper. The vertical coor-
dinate in Figs. 8-13 is calibrated by H × ln(pJp) in
the unit of m. - ,

The latitude-height distribution of kinetic energy
for n = 1, as shown in Fig. 9, is consistent witffthat of
Z(1) in Fig. 8. The two cores of maximum kinetic
energy between 50* and 60°N and around 80°N are
the projection of a fully developed blocking situation.
The partition ofK( 1 ) into the u and v components in
the same figure further indicates that, for the 50°-60°N
core the zonal component is the sole contributor,
whereas the core at the higher latitudes is supported
by both meridional and zonal components. The sources
of kinetic energy are examined in Fig. 10. The latitu-
dinal distribution of kinetic energy production -V- V 4,

for n = 1 is consistent with that of K(I). At these

latitudes of maximum K( 1), the kinetic energy is pro-
duced in the lower and upper troposphere to support
the circulation against the dissipation. In terms of non-
linear wave-wave interaction L( 1 ), the kinetic energy
input at n = 1 from the shorter waves has two clearly
identified maxima where the two cores of maximum
kinetic energy are observed. The wave-mean interac-
tion M( 1 ) shows that its latitude-height distribution
does not appear to be related to the dipole structure of
blocking.

As shown in Kung and Baker ( 1986 ), in the observed
circulation the baroclinic energy conversion C(1) is
not directly related to the blocking development. The
baroclinic energy source always exists in a sufficient
amount to support the circulation against the dissi-
pation and to provide the kinetic energy source for
nonlinear interactions. This is seen in the consistency
of K(1) and -V.V_ for n = 1 in their latitudinal
variations. The appearance of L( 1) maxima'at the core
regions of kinetic energy maximum is a specific phe-
nomenon in association with the development of
blocking, and disappears once the blocking enters the
decaying stage.

In comparing the latitude-height cross sections of
simulations with those of the observed circulation, the
differences in the dipole structure of blocking are strik-
ing. Except for Expt. 3, all other simulations show weak
dipoles in terms of K( I ) in Fig. 11 in comparison with
the observation in Fig. 9. It is stronger in Expt. 3 but
is still weaker than that in the observation. For Expt.
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4, which is also a simulation with the high resolution
GCM, a weaker dipole of K( 1 ) than Expt. 3 is noted,

but the pattern of existing dipole is clearer than Expts.
1and 2 ofthe coarse grid GCM simulations. As is seen
in Fig. 12, the distributions of -V. V_ for n = 1 in
the simulations show the concentrated production of

kinetic energy in the lower boundary of latitudes where
K( 1) is large. However, -V. V _ in the upper tropo-
sphere is weak and the distribution is erroneous, re-
flecting the weak ageostrophic component of circula-
tion in the simulation due to time integration by the

Matsuno scheme (see Daley et ai. 1985). The distri-
butions of L( 1 ) of the simulations in Fig. 13 indicate
L( 1 ) is generally much weaker than in the observation

in Fig. 10. What are shown in cross sections of the

simulations are consistent with the circulation patterns
and spectral energy budgets (Table 3) in indicating
that the high resolution of the model is needed to pro-
duce the proper wave-wave interaction to provide ki-
netic energy input at n = 1.

6. Barotropic-baroclinic conversions of energy

Temporal variations of barotropic (m = 0) and
baroclinic (m = 3-10) energies in the zonal mean mo-
tion (n = 0), ultralong waves (n = 1-2) and synoptic
waves (n = 3-15 ) over the Northern Hemisphere are
illustrated in Fig. 14 after Tanaka and Kung (1988).

54 -- _n=0

52 -- rn= 3--10

50--

?E 48-

,_ / _. t
o ,8- /

/ l

,0 - I 'A
_, ! % I -n =3--15

/',\

I|I I I I I I I I I I I
10 20 30 10 20 30

Dec 1978 Jan 1979

FIG. 14.Time seriesof barotropic(m = 0) and baroclinic(m = 3-10 ) energies for zonal mean
motion (n = 0), ultralong waves (n = 1-2), and synoptic waves (n = 3-15) over the Northern
Hemispherefrom 10 December 1978 through 31 January1979 afterTanaka and Kung (1988).
Appearance for typical Rex blockingsare marked by arrowsover the time axis.
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The time variation of the zonal baroclinic energy (n

= 0, m = 3-10) indicates clear energy peaks at 16 and
28 December and 9 January superimposed on the sea-
sonal trend. There are subsequent increases of baro-

clinic energy of synoptic waves in the time series (n
= 3-15, m = 3-10) through a process of baroclinic
instability. The time lag is about 5 days. The time vari-
ation of synoptic-scale barotropic energy (n = 3-15,
m = 0) is not shown in the figure but it is almost in
phase with the baroclinic energy. The barotropic energy
of ultralong waves (n = 1-2, m = 0) increases three
days later through the wave-wave interaction of kinetic
energy, the process required for amplification of ultra-
long waves to form the blocking. The peaks of(n = 1-
2, m = 0) are identified with the most intensified pat-
tern of blockings as marked in the figure. After the full
development of the blocking (i.e., after reaching the
mature stage of the blocking), the baroclinic energy of
ultralong waves peaks.

The orderly transfer of energy from the zonal baro-
clinic component to the barotropic component of ul-
tralong waves in the normal mode expansion may be
identified with processes observed in the standard zonal
wavenumber domain. The zonal available potential

energy is transferred into the synoptic-scale distur-
bances, converted to kinetic energy and then used to
build up the barotropic energy of blocking in the ul-
tralong waves during the blocking development. Based
on time mean spectral energetics (Table 3), it is seen
that synoptic-scale waves support the energy of plan-
etary waves by means of wave-wave interaction. The
time series in Fig. 14 further reveals evidence of the

upscale energy cascade from synoptic-scale waves to
planetary waves. The upscale energy cascade occurs
when the energy supply is in a phase conducive to am-
plification of planetary waves. Also, as shown in Kung
and Baker (1986), under the developed blocking sit-
uation the meridional heat transport increases dra-

matically, and this apparently leads to the peak of the
baroclinic energy of ultralong waves in the mature
blocking stage.

This orderly transfer of energy is not well simulated
in the numerical experiments, as shown in Fig. 15. In
simulations it is possible to follow the energy flow from
the baroclinic component of the zonal motion to the
baroclinic and barotropic components of the synoptic-
scale waves. However, the buildup of the barotropic

energy in the ultralong waves at the time of blocking
development is difficult to follow in all simulations.
This is consistent with the fact that in simulations,

enough kinetic energy is available at the synoptic-scale
range through baroclinic conversion, but the model
tends to fail to provide adequate energy input at ultra-
long waves through the wave-wave interaction.

Despite the disturbed time series of energy compo-
nents in simulations (Fig. 15 ), the parallel time series
ofthe nonlinear interactions A and B in Fig. 16 indicate
traceable transformations from the zonal baroclinic

energy to the barotropic energy of ultralong waves.
Around 5 and 25 January in Expt. 3, _ shows its max-
ima for (n = 1-2, m = 0), and as seen in Fig. 3 and
Table !, these are the periods when Expt. 3 generated
the blockings. The first blocking is a reasonable sim-
ulation ofthe observed blocking, but the second block-

ing is dislocated in its longitudinal position. It may be
noted, however, that Expt. 3 is the only simulation

able to generate a second blocking after the first one.
Expt. 2 also indicates a traceable energy transformation
toward the barotropic energy ofultralong waves (n = 1
and 2). However, as seen from Table 3 the kinetic
energy gain in mostly in L(2) rather than L( 1 ).

As stated in Eq. (3) the effects of nonlinear inter-
actions, A and B, are balanced with the diabatic process
F. For the barotropic component of ultralong waves,
the largest portion of this process is expected to be the
dissipation. Since F is obtained as the residual term of
Eq. (3), the dissipation is actually the energy sink or
cascade from (n = 1-2, m = 0). The time series of
energy components in Fig. 14 appear more disturbed
than expected from time series of transformations in
Fig. 15. It may indicate that, in addition to the weaker
nonlinear wave-wave interaction at uitralong waves,

the energy cascade process as implied by F may be an
additional problem in the numerical simulation of
blocking, even with the high resolution model.

7. Concluding remarks

This study of Northern Hemisphere winter blocking

episodes reveals considerable energetics differences be-
tween the simulations and the observation, and among
simulations. In the simulations enough kinetic energy
is available at the synoptic-scale range through the
baroclinic conversion, but the models provide insuf-
ficient kinetic energy input from this source to n = 1
through the wave-wave interaction L( 1 ). The failure
in simulating realistic blocking due to inadequate L( 1 )
can be attributed in part to inadequate grid resolution.
The 4 ° × 5° coarse resolution of the model results in

a downscale energy cascade preventing a proper upscale
input at n = 1.

Among the four simulations examined in this study,
Expts. 3 and 4 by the high resolutions GCM data tended
to generate realistically strong blockings with compat-
ible energetics as in the observed blocking episode. It
is also noted that Expt. 3 with the GLA initial data was
able to amplify n = 1 to produce the second blocking
during late January 1979 following the first one, al-
though there was an obvious longitudinal dislocation
of the second blocking.

The latitude-height cross sections of energy variables
confirm that the dipole structure of the observed
blocking is clearly described by n = 1, and further L( 1 )
maxima are located at the kinetic energy maxima of
the dipole. However, in all simulations, such a dipole
structure of energetics is either weak or nearly absent.
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PIG. 15. AS in Fig. 14, but for the four simulations. Baroclinic energy is the sum of baroclinic indices m = 2-10.
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FIG. 16. Time series of kinetic energy interaction B and available potential energy interaction A
for four simulations for the corresponding energy terms in Fig. 14.

Energetics of blocking development is further ex-
amined in a time series of barotropic and baroclinic
components of energy and associated conversions. In
the observed circulation an orderly transfer of energy
is recognized from the zonal baroclinic component to
the barotropic component of ultralong waves via syn-
optic-scale conversions. In the simulations, however,
this orderly transfer of energy is not well simulated.
The buildup of barotropic energy in ultralong waves

at the time of blocking development is either too weak
or unrecognizable. This is consistent with the trend of
the model failing to provide an adequate energy input
at ultralong waves through the wave-wave interaction.
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Abstract

Comparative energetics is presented for a series of four general circulation model simulations for

January 1979 conducted by the Goddard Laboratory for Atmospheres. The simulations include

cases of coarse and fine horizontal model resolutions with two slightly different initial con-

ditions. Using a three-dimensional normal mode expansion, we find that the gravity mode energy

levels are significantly reduced in the higher wavenumbers and in the higher order internal vertical

modes by the increase of horizontal model resolution. The prediction error of the model exper-

iments is measured by an error norm between the two spectral expansion coefficients of the

observed and simulated atmospheres. The increase of the model resolution is found to reduce

the prediction error in the planetary waves (n = 1 and 2) of the barotropic component and in the

synoptic waves of the baroclinic component. It is also found that the common bias in the predic-

tions of the first internal vertical component of wavenumber 1 is related to the misrepresentation

of the Pacific blocking occurring at the predictability limit of the model atmosphere.

Zusammenfassung

Energetik der Normalschwingungen und Fehleranalyse der GLA GCM Simulationen eines Win-

termonats mit unterschiedlichcr horizontaler Aufl0sung

Eine vom Goddard Laboratory for Atmo_phcre_ durchgct'uhrtc vcrgleichcnde Encrgicstudic ciner

Rcihc yon vier Januarsmlulationcn des Jahrc_ 1979 mit Modellcn dcr allgemcincn Zirkulation

wird vorgcstcllt. Die Simulationcn umfasscn Fallc grober und fcincr horizontaler Autqosung unter

zwei geringfugig verschtcdenen Anfangsbedingungcn. Dutch Entwicktung nach dreidimensionalen

Normalschwingungen linden wtr, bei VergrdlScrung der horizontalen Modellaufl6sung, d'al_ die

Schwereweltenenergie far die h6heren Wellenzahlen und ftir die internen vertikalen Schwingungen

hoherer Ordnung bedeutend kleiner wird. Der Vorhersagefehler der Modetlversuche wird durch

eine Fchlernorm zwischen den beiden spektralen Entwicklungskoeffizienten der beobachteten

und der nachgebildeten Atmosphare gcmessen. Es stellt sich heraus, da5 die Erh6hung der 5,1o-

dellauO6sung den Vorhersagefehler in den planetaren Wellen (n = 1 rind 2) der barotropen

Komponente und in den synoptischen Wellen der baroklinen Komponente verringert. Ebenfalls

zeigt sich, dab der systematische Fehler in den Vorhersagen der ersten vertikalen Komponente

der Wellenzahl 1 mit der verzerrten Darstellung des an der Vorhersagbaskeitsgrenze der Modell-

atmosph_e auftretenden ,Pazifik-Blockings' zusammenhangt.

1 I ntroduction

One of the primary objectives of the First GARP

(Global Atmospheric Research Program) Global

Experiment (FGGE) was to improve extended-range

weather prediction models. Through the analysis of
the FGGE observations and parallel simulations by the

Goddard Laboratory for Atmospheres (GLA) general
circulation model (GCM), Kung and Baker (1986a)

have shown that the energy processes in the short-
wave range of the simulations are much more intense

than those in the observations for the FGGE winter.

This is caused by the gain of kinetic energy in the

short-wave range from the source of the synoptic-
scale range through the nonlinear wave-wave inter-

action. The failure of the simulation to amplify ultra-

long waves and produce a pronounced blocking is

attributed to the lack of kinetic energy input by the
wave-wave interaction to ultralong waves because of

the excessive down-scale cascade. By means of a

three-dimensional normal mode decomposition of

atmospheric energetics variables, Tanaka et al. (1986)
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haveshownthattheabove-mentionedkineticenergy
transformationis accompainedby theenergyflow
frombaroclinicto barotropiccomponentsof atmo-
sphericmotion.The normal mode energetics have a

specific advantage in separating energetics character-
istics into Rossby and gravity modes. Tanaka et al.

have reported a large reduction of high frequency

gravity mode in the simulated atmosphere compared
to the FGGE observation.

Based on the analysis results, four numerical simula-
tions of January 1979 are conducted to investigate

the energetics effects of grid resolutions and initial
datasets. The four simulations include those of two

different grid resolutions, each with two different
initial datasets. Both the standard 4 ° x 5 ° latitude-

longitude GLA GCM and fine resolution 2 ° × 2.5 °

GLA GCM are integrated for a one-month period

using the 0000 GMT 1 January 1979 initial datasets

during the FGGE as analyzed by the GLA and the

Geophysical Fluid Dynamics Laboratory (GFDL).

The computational effects of increased horizontal

resolution were extensively investigated by many

researchers (e.g., Manabe et al., 1970; Wellck et al.,

1971; Miyakoda et al., 1971; Purl and Bourke, 1974).
Manabe et al. (1970) compared the results of coarse

(about 500 km grid size) and f'me (about 250 km)
resolution models and showed that the spectral di-

stribution of eddy kinetic energy becomes closer to

that of the observed atmosphere in the fine resolu-

tion model partly due to the shift of energy dissipa-
tion toward a smaller scale. Wellck et al. (1971)

compared the simulated energy spectra for 10 °, 5 °,
and 2.5 ° grid models in longitude and latitude to show

a noticeable improvement of the long wave spectrum
at wavenumbers 1 to 4 in the 2.5 ° grid model. Purl

and Bourke (1974) investigated the effect of a trunca-

tion on energy and enstrophy spectra in barotropic
spectrals models and showed that the unreaJistic energy
accumulation at short waves in a coarse resolution
model is released in a fine resolution model. The in-

crease in the model resolution resulted in a reduction

in short wave energy.

The effect of slightly different initial data on predictive

skill was documented by Charney et al. (1986), Sma-

gorinsky (1969), WiUiamson and Kasahara (1971), and

Lorenz (1982) in the context of atmospheric pre-
dictability. Unavoidable initial error grows rapidly as

the time integration proceeds. The predictions by the
identical twin models, starting from the slightly differ-

ent initial data, level off with each other to indicate

that the determinstic atmospheric predictability is of
the order of two weeks. The error growth is induced

essentially by a nonlinear cascade of error energy from

small to large scales. Yee and Shapiro (1981)and

Straus (1988), on the other hand, proposed that
numerical errors can be amplified as a part of the

dynamics of a physically unstable system in the atmo-
sphere. Recently, Miyakoda et al. (1986) conducted a

series of one-month forecasts using three different

initial conditions. They showed that the circulation

patterns starting from these three initial conditions
tend to be similar to each other on a one-month time

scale, indicating some recognizable skill in the last ten

days of the month. They suggested that extended-

range forecast errors are largely due to the systematic

bias which is known as climatic drift. Their study
indicates a possibility of extended-range forecasting

by investigating the mechanism of error growth of our
dynamical-statistical forecasting models.

The effect of the increased horizontal resolution and

the effect of the different initial conditions upon the
climatic drift are examined in this study using a recently

developed normal mode energetics scheme (see Tanaka,

1985; Tanaka et al., 1986; Tanaka and Kung, 1988).

The scheme allows the diagnosis of not only the three-

dimensional spectral distributions of energy and energy
transformations but also the examination of the

energetics characteristics of Rossby waves, gravity

waves, barotropic components, and baroclinic com-

ponents of the atmospheric general circulation. Pre-
diction errors in previous studies have been assessed

using conventional specific fields such as the root-

mean-square error of 500 mb height or sea-level pres-
sure (e.g., Shulda, 1985). In the normal mode ex-

pansion method, it is possible to evaluate the predic-
tion errors for barotropic and baroclinic components

or Rossby and gravity modes, using global atmospheric
data. The examination of error energy spectra of

predictions in terms of the normal mode expansion

should provide meaningful information in order to

improve the forecasting skill of the model. The charac-
teristics of error energy spectra are presented in the

present study for the wavenumber and vertical index

domain with a barotropic-baroclinic decomposition.

2 Simulation Experiments and Datasets

As listed in Table 1, four simulation experiments

(Exps-1, 2, 3 and 4) were conducted for the period
1-31 January 1979 with the GLA standard and high

resolution GCMs. The GLA and GFDL gridded analyses
of the FGGE at 0000 GMT 1 January were used as the

initial data (see Daley et al., 1985; Kung and Baker,

1986a). The mean January climatology of the sea
surface temperature was used in all four simulations.

The standard coarse resolution version of the GLA

GMC used in the simulation is the fourth-order global
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Table I Four simulation experiments of the January 1979
global atmosphere with GLA GCMs

Experiment 1/1/79 0000 GMT GCM grid size
(initial data) (latitude x longitude}

] Exp-I i GLA

Exp-2 GFDL
Exp-3 GLA
Exp-4 GFDL

4° X 5 °
4° × 5 °
2° X 2.5 °
2° X 2.5 °

atmospheric model described by Kalnay-Rivas et al.

(1977) and Kalnay et al. (1983). There are nine vertical

layers equal in sigma with a uniform nonstaggered

horizontal grid of 4 ° latitude by 5 ° longitude. The

model is based on an energy conserving scheme in

which all horizontal differences are computed with

fourth-order accuracy. A 16th-order Shapiro (1970)

filter is applied every two hours on the sea-level pressure,

potential temperature, and wind fields, ha this scheme,

wavelengths longer than four grid lengths are resolved

accurately without damping. Wavelengths shorter than

four grid lengths, which would otherwise be grossly

misrepresented by the finite differences, are f'dtered

out while they are still infinitesimal. The energy

spectrum of high-frequency gravity modes is controlled

by the Matsuno (Euler-backward) time integration

scheme. Poleward of 60°N the time tendency of the

full model fields are filtered for unstable zonal wave-

numbers as determined by a Matsuno time scheme, the

fourth order spatial differencing, and a 7.5 rain time

step (see Takacs and Balgovind, 1983).

The 2 ° latitude by 2.5 ° longitude high resolution

version of the GLA GCM is identical to the coarse

resolution version with respect to the physical para-

meterizations. The time step of the hydrodynamics

is 3.75 minutes in the high resolution version com-

pared to 7.5 minutes in the coarse resolution version.

An 8th-order Shapiro (1970) filter is used rather file

16th-order filter in coarse resolution model.

The four simulation datasets analyzed in this study

include twice-daily grid-point values of geopotential

height, temperature, humidity, horizontal wind and

vertical velocity at 1000, 850, 700, 500, 400, 300,

250,200, 150, 100, 70, and 50 mb at 0000 and 1200

GMT. The FGGE analysis data by the GFDL are

utilized in this study to represent the observed

atmosphere for evaluating the prediction errors in the

simulations.

3 Scheme of Analysis

The analysis scheme of normal mode energetics is

based on Tanaka (1985) and Tanaka and Kung (1988).

Total energy E = K + P (the sum of kinetic energy and

available potential energy) for a component of three-

dimensional normal mode expansion may be written as

1 12
Entre =_pshm Iwnim , (1)

where waurt is a dimensionless complex expansion

coefficient of dependent variables u, v, 0. The dimen-

sional factors of surface pressure of the basic state Ps

and equivalent height h m are multiplied to Iwni m 12

so that the energy is expressed in units of Jm -2. The

triple subscripts are the wavenumber n, meridional

index 1, and vertical index m, respectively.

The vertical modes m = 0 and m #: 0 are regarded

respectively as the barotropic (external) and baro-

clinic (internal) modes. Figure 1 illustrates the first

six vertical structure functions as the expansion basis

in the vertical (after Tanaka et al., 1986). Total energy

pertaining to m = 0 is defined as barotropic energy

and that for m :# 0 baroclinic energy. There are 12

vertical analysis levels to generate the vertical modes of

m = 0-11. A construction of vertical structure func-

tions for very small equivalent height, particularly for

m = 11, is extremely difficult and contains a large

extent of uncertainty. For this reason, the maximum

vertical index utilized in this study is m = 10. Global

atmospheric field of each vertical index is then

projected onto orthonormal Hough functions which

have been computed from Laplace's tidal equation for

a motionless basic state. A total of 50 meridional

indicies are used, including 26 Rossby modes, and 12

eastward and 12 westward gravity modes. These

meridional modes retrieve a sufficient amount of

atmospheric energy of large scale motions as demon-

strated in Tanaka (1985). The zonal wavenumbers

n = 0-15 are examined in this study. Unrealistic

reduction of short waves was analyzed for the coarse

resolution model output beyond n = 18. The reduc-

tion may be explained by the Shapiro filter which

filters out the wavelengths shorter than 4 grid lengths

(i.e., 20 ° longitude). The definition of energy in (1)

involves a contribution from vertical geopotential flux

acros_ the lower boundary; however, this contribution

is negligibly small.

The spectral energy balance equation for a component

of normal mode expansion may be written as

denim

dt -= Bntm + Cnlm + Dnlm' (2)

where Bni m is the nonlinear interaction of kinetic

energy, Cni m that of available potential energy, and

Dram the combined energy source and sink by the

diabatic processes, including dissipation. The spectral
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Figure 1 The first six vertical structure functions for the vertical indicies m = 0-5 {after Tanaka et al., 1986).

sums of Brain and Cntm are zero because they represent

the global integral of the flux covergence of kinetic

energy and available potential energy. The nonlinear
interaction of kinetic energy B is equivalent to a sum
of wave-mean and wave-wave interactions of kinetic

energy in the standard spectral energetics, and so is
the nonlinear interaction of available energy C (see

Saltzman, 1957; Kung and Tanaka, 1983). Surface

wind at p = Ps has been assumed to vanish as set in

Tanaka and Kung (1988).

Using the method of normal mode expansion, we can
assess the forecast error in the simulated atmosphere

by an error norm between the spectral expansion
coefficients of observation Wntm and simulation '_'ntm,

where the hat designates variables for simulations. A
similar evaluation of forecast error is seen using the

error norm of spherical harmonic expansions coeffi-
cients at a certain vertical level (e. g., Boer, 1984). The

present error analysis is based on the information of
whole atmospheric field. According to the definition

of energy in (1), the error variance ERR in the simula-

tion (actually the apparent error because the observed
variables will involve observational errors) may be

given as a sum of the following quantities of the

normal mode expansion:

1
ERRn_ n = _pshm I_n[rn -When 12 (3)

The same dimensional factor with (1) is used so that

the error variance has physical units of Jm -2. It should

be remarked that errors in amplitude and in phase are

mixed together in this expression. By means of the
inverse of the vertical and Fourier-Hough transforms,

it may be shown that the sum of ERRntm has the same
form as total energy E = K + P, in which the dependent

variables u, v, and O have been replaced by U - u,

-v, andO-¢.
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4 Gross Energy Budget for Simulations

One-month average energy spectra and energy' inter-

actions are examined in this section. The spectral

distributions of total energy E(n) for Rossby modes

and gravity modes are illustrated in Figure 2 as func-

tions of wavenumber n for the four simulations. The

results of the four simulation experiments, Exp-1

through Exp4, are distinguished in the figure by a

combination of the dashed line (4 ° × 5 ° coarse resolu-

tion model), solid line (2 ° x 2.5 ° fine resolution

model), black dot (GLA initial condition), and white

circle (GFDL initial condition). The difference of

energy spectra at higher wavenumbers between the

coarse and fine resolution models is apparent. Both the

Rossby modes and gravity modes indicate lower energy

levels in the fine resolution models at higher zonal

wavenumbers. The gravity modes show a larger reduc-

tion than the Rossby modes.
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Figure 2 Monthly mean total energy spectra E (n) = K (n) + P (n)

of Rossby modes and gravity modes in the zonal wavenumber
domain for the four simulations. The simutations arc distin-

guished by coarse (dashed line) and fine (solid line) model
resolutions with a combination of GLA (black dot) and GFDL
(white dot) initial datasets.

Figure 3 illustrates the total energy spectra E(m) of

zonal eddy (n = 1-15) for Rossby modes and gravity

modes as functions of vertical indices m. The Rossby

modes indicate bimodal energy peaks at the baro-

tropic index m = 0 and baroclinic index m = 3. The

bimodal energy peaks were explained by Tanaka and

Kung (1989) as the characteristics of atmospheric

baroclinic instability for a January basic flow. The

gravity modes show the largest energy levels at m = 2-3.

Different energy levels between the coarse and fine

resolution mode_s at the higher vertical indices of

gravity modes are apparent. The increase of horizontal

resolution results in a reduction of gravity mode

energy levels in the higher order vertical indices.

Rossby modes have the same tendency of diminishing

energy levels for the higher vertical indices. Vertical

energy spectra are not influenced by the different

initial conditions provided by the GLA and the GFDL.

It is well-known that the effect of an increased horizon-

tal model resolution appears as an improved eddy

energy spectrum. Manabe et al. (1970) found that the

increase in the horizontal model resolution improves

the general magnitude and the spectral distribution of

eddy kinetic energy to be closer to those of the observa-

tion due not only to the increase in the accuracy of the

E
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Figure 3 As in Figure 2, but in the vertical index domain
m =0-10.
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differences but also to the shift in the scale of dissipa-

tion toward smaller scales. WeUck et al. (1971)com-

pared 10 °, 5 °, and 2.5 ° mesh model simulations and

showed an increase of kinetic energy at the planetary

waves in the freer resolution model. Modified up-scale

energy cascade from synoptic waves to planetary waves

are discussed as the main reason for the improvement.

Puri and Bourke (1974) showed an unrealistic

accumulation of eddy energy at the shortest resolvable

waves in a coarse resolution model. They demonstrated

that the accumulation is released in a finer resolution

model to reduce the short wave energy'. The spectra

with the GLA initial conditions and the GFDL initial

conditions are indistinguishable. Miyakoda et al. (I 986)

showed that the circulation patterns of the models

tend to be similar to each other on the one-month time

scale for three stochastic predictions which start from

observed initial conditions derived from three different

meteorological centers. The results of their studies

agree with the energetics analysis using the normal

mode expansion.

The normal mode energetics are summarized in Table 2

in the barotropic (m = 0) and baroclinic (m = 1-10)

decomposition of zonal (n = 0) and eddy (n = 1-15)

components. The results for the FGGE observations

for the winter period from December to February after

Tanaka and Kung (1988) are also listed. Compared to

the observations, there is a consistent bias of larger

zonal barotropic energy in all simulations. Zonal baro-

clinic energy is closer to the observations. The term B

shows large negative values in the eddy baroclinic

component (n = 1-15, m = 1-10- and positive values

in the eddy barotropic (n = 1-15, m = O) and zonal

barotropic (n = O, m = O) components. This indicates

kinetic energy transformations from eddy baroclinic

to eddy and zonal barotropic components as the net

during the period. It is noted that this kinetic energy

interaction is significantly larger in simulations than in

the observation corresponding to the larger available

potential energy interaction C from the zonal baro-

clinic (n = 0, m = 1-10) to eddy baroclinic n = 1-15,

m = 1-10) components. The model biases of large

energy level in the zonal field and intense energy

transformations were documented in Kung and Baker

(1986a) and Tanaka et al. (1986). These deficiencies

of the model are not improved by the increase of

horizontal resolution and the use of different initial

datasets. Kinetic energy supply into the zonal baro-

tropic component (m = 0, n = 0) rather increases with

the increase of horizontal resolution. The net diabatic

Table2 Monthly mean normal mode energy budget for the four simulations. Energy (K,P, and E) inunits
of 105 Jm -2 and energy transformations (B, C, D, and dE/dt) in Wm -2 are listed for the zonal (n = 0) and
eddy (n = 1-15) components in the barotropic (m = 0) and baroclinic (m = 1-10) decomposition. The
same energy variables for the FGGE ob_rvations during three winter months are after Tanaka and Kung
(1988)

n m

Exp-1
0 _ 0
0 1-10

1-15 0
1-15 1-10

Exp-2
0 0
0 1-10

1-15 0
1-15 1-10

Exp-3
0 0
0 1-10

1-15 0
1-15 1-10

Exp-4
0 0
0 1-10

1-15 0
1-15 1-10

FGGE
0 0
0 1 10

1-15

1-15 1-10

K P E B C D dE/dt

9.5 2.9 12.4 0.49
4.2 46.7 50.9 - 0.03
5.0 0.3 5.3 0.41
4.9 3.8 8.7 - 1.72

11.2
46.3

4.5
8.7

11.3
48.2

5.1
8.4

11.7
47.0

4.7
7.8

8.4
48.3

3.8
7.6

8.6 2.6
3.6 42.8
4.3 0.2
4.9 3.8

8.7 2.6
3.7 44.4
4.9 0.3
4.7 3.8

9.0 2.7
3.7 43.3
4.4 0.3
4.3 3.5

6.5 1.9
4.1 44.2
3.6 0.2
4.3 3.3

0.46
0.00
0.39

- 1.68

0.64
0.13
0.51

- 1.43

0.73
0.15
0.45

- 1.47

i

i 0.47
- 0.06

0.33
-0.82

- 0.26
- 2.37

0.16
2.30

-0.25
- 2.30

0.15
2.34

-0.28
- 2.52

0.17
2.42

0.00
2.42

-0.51
I -0.54

-0.07
2.66

- 0.49
-0.52

-0.22
2.59

-0.65
- 0.95

0.23
0.02
0.06

I 0,04

0.14
0.35
0.04
0.13

0.14
0.20
0.03
0.04

-0.29
-- 2.46

0.19
2.51

- 0.20
- 1.85

0. I0
1.63

-0.23
2.69

-0.58
-0.98

-0.27
1.97

-0.44
-0.86

0.20
0.37
0.06
0.06

0.00
0.06
0.00
0.04
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process D of the zonal baroclinic component ( n = O,

m = 1-10) is larger in the simulations than in the
observations. It is also noted that the net diabatic sink

D of the eddy baroclinic components (n = 1-15,

m = 1-I0) is larger in the fine resolution model than
in the coarse resolution model.

5 Error Analysis

Error analysis can be used to measure the difference of

a model property and that of the forecast skill for

different simulations. In the normal mode energetics

scheme, the prediction errors are evaluated using the
global integrations of the atmospheric fields. We use
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Fillure4 Growth of prediction errors in the four simulations: ERRm_ 0 is eddy baroclinic (n = 1-15,
m = 1-10) components, and ERRm= o eddy barotropic (n = 1-15, m = 0) components. The simulations
are distinguished by coarse (dashed line) and fine (solid line) model resolutions with a combination of GLA
(black dot) and GFDL (white dot) initial datasets. Persistence errors starting from 1 January 1979 are
presented by a solid line without symbols.
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the GFDL analysis of the FGGE data to represent the 20

observed real atmosphere for evaluating the prediction 18

error in model simulations. Although there are other 16

versions of the FGGE analysis, the use of other analysis 14

data should not alter our major conclusions. E_ 12

Figure 4 illustrates the error growth in eddy field _ lo

(n = 1-15) of the simulations starting from the initial _ 8

data of 0000 GMT 1 January. For comparison, the 6

persistence error is presented starting from the same 4

date. The persistence error reaches its saturation level

on day 4 in the baroclinic component (m = 1-10), and

on day 6 in the barotropic component (m = 0). In

contrast, the error energies of the simulations reach

their saturation levels around days 8 to 10 in both the

barotropic (m = 0) and baroclinic (m _ 0) components.

Dalcher and Kalnay (1987)proposed the theoretical 14
13

limit of dynamical predictability as a function of two- _z
dimensional total wavenumber based on the time at

which the error energy reaches 95 % of the saturated 11

value. The error growth in the eddy field is slightly lo

reduced in the high resolution model (solid line) com- 9
e_

pared to the coarse resolution model (doted line). The _ e
error energy for the GLA initial data (black dot) on *o 7
day 1 is about 2 for the baroclinic components and 1 _ 6

for the barotropic components with units of lO s Jm -z 5

because of the different initialization techniques by 4

the GLA and the GFDL. Supposing that these are the 3
estimates of unavoidable initial error, these initial

2
errors acount for more than 10% of the saturation

1
error energy.

o
According to Dalcher and Kalnay's (1987)criterion of

the dynamical predictability, the error energy of the

GLA model reaches 95 % of the saturated value on

about day 7. The error energy spectra in the wave-

number domain on day 7 are illustrated in Figure 5

for the barotropic and baroclinic components. The

errors are the largest in the planetary waves forn = 1-2

in the baroclinic components, and in the synoptic

waves of n = 4-5 for the barotropic components, In

interpreting the error energy spectrum, the work of

Lorenz (1982) indicates that nonlinear interactions in

the system are very effective in amptifying the predic-

tion error and thereby degrading predictability. Yet

and Shapiro (1981) and Straus (1988)suggested that

the physical instability should play a key role in the

growth of mid-latitude forecast error. Straus showed

that the synoptic scale (i. e., n = 4-5) peak in the error

energy spectrum is due to baroclinic instability,whereas

the planetary wave peak is due entirely to nonlinear

interactions which transfer error energy from the

synoptic scale to the planetary scale. The distinct error

energy spectra in the barotropic and baroclinic com-

ponents in this study may be related partly to the

dynamics of the unstable system combined with the
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Figure 5 Error energy spectra of the four simulations on date

7: ERRm, 0 is baroclinic (m = 1-10) components, and
ERRm= O barotropic (m = 0) components.

nonlinear interaction. However, the separation of

these two factors would be difficult. There is a clear

difference in the error energy levels between the

coarse and fine resolution models. Errors are signif-

icantly reduced by the increase of horizontal resolu-

tion in the planetary waves (n = 1 and 2) for the baro-

tropic components and in synoptic waves (n = 5) for

the baroclinic components.

Table 3 lists the error energy spectrum in the vertical

index domain over n = 0-5 for zonal wavenumbers

n = 1-6 and for the sum of eddies n = 1-15 at day 7.

The vertical error energy spectra for eddies n = 1-15

show the largest values for the barotropic components

(m = O) and the next largest in the baroclinic com-

ponent (m = 3). The magnitude of the error energy

spectrum appears to be proportional to that of the
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Table 3 The error energy

and the sum of the eddies

m ] n=l

Exp-I
0 0.79

I 0.34

2 0.22

3 0.31
4 0.22

5 0.11

Exp-2

0 ! 0.81
1 0.23

2 0.20
3 0.36

4 0.22

5 0.10

Exp-3
0 0.50

1 0.32

2 0.23
3 0.25

4 0.17

5 0.09

Exp-4
0.44

0.31

0.18

0.28

0.18

0.07

spectrum at day 7 in the vertical index domain m = 0-5 for wavenumbers n -- 1-6
n= 1-15 in units of lO s Jm -2

n=2 n=3 n=4 n=5 n=6 n=1-15

0.88
0.22

0.31
0.64

0.35

0.14

0.77

0.20

0.33
0.56

0.33
0.16

0.58
0.22

0.24

0.57
0.31

0.12

0.50

0.22

0.30

0.34

0.17

0.07

0.42

0.15
0.18

0.29

0.13
0.06

0.55
0.23

0.17

0.41
0.18

0.05

0.60 0.38

0.21 0.12

0.27 0.13

0.52 0.24

0.28 0.09

0.11 0.04

0.91

0.13

0.13

0.35

0.16

0.07

0.67

0.13

0.22
0.38

0.18
0.10

1.14
0.14

0.22

0.39
0.18

0.08

0.52

0.12
0.22

0.35
0.17

0.08

1.35
0.18

0.31
0.62

0.23

0.08

1.21

0.14

0.34
0.52

0.16
0.06

0.76
0.15

0.21

0.35
0.14

0.05

0.97

0.14

0.20

0.38
0.12

0.04

0.74

0.07

0.17

0.33

0.14

0.05

0.43

0.05

0.10
0.17

0.08
0.04

0.66
0.04

0.18

0.31
0.12

0.05

0.69

0.10

0.14

0.25
0.10

0.04

6.54

1.49

1.81

3.29

1.60
0.72

5.70

1.21

1.84

2.98
1.41

0.72

5.48

1.35

1.76
2.96

1.38

0.61

5.04

1.30

1.66

2.86

1.29

0.58

energy spectrum in the vertical index domain (see

Figure 3). If the vertical spectrum in Figure 3 is a

reflection of dominant baroclinic instability as men-

tioned before, the results suggest a possible connec-

tion between the error growth and the instability of

the dynamical system, as discussed by Straus. We note

that a finite amplitude initial error grows as fast as

the fastest growing mode of the unstable dynamical

system if the system is linear, although this is not the

case in the real atmosphere. It is interesting to note

that both baroclinic instability and error growth for

numerical weather prediction have a comparable e-

folding time of about 2 days. The bimodal error

energy peaks are confirmed for all individual zonal

waves n = 2--4 in Table 3, except for n = 1. The first

internal mode of m = 1 at n = 1 indicates larger error

energy compared with that for m = 3, except for the

Exp-2. The very large error energy for m = 1 at n = 1

apparently is different from other zonal waves, and will

be examined.

6 Vertical Propagation of Wavenumber 1

The unrealistic behavior of the first internal mode

m = 1 of wavenumber n = 1 in the GLA simulations

has been pointed out by Tanakaet al.(1986).According

to our previous result, the simulated component of

m = 1 at n = 1, starting from an initial data at 16

December 1978, indicated the minimum amplitude

throughout the period without being amplified, while

the observed component underwent occasional am-

plifications corresponding to the vertical propagation

of n = 1. Figure 6 shows the time series of total energy

E = K + P of the component (n = I, m = 1) for the

observations and simulations starting from the initial

data of 1 January 1979. During the integration period,

the observed energy is maintained at approximately the

same level. In contrast, in aU simulations the energy

tends to increase during the earlier half of the period.

This is a remarkable difference caused by the different

initial data compared to our previous experiment. As

shown in Table 3, the largest portion of the forecast

error for n = 1 in the baroclinic component comes

from m = 1. It is noted that m = 1 has an increasingly

large amplitude near the top of the model (see Figure

I). This implies that the systematic bias of simulations

occurs at the top of the model atmosphere. Figure 6

also demonstrates that there is no improvement by the

increase of the model resolution and the use of differ-

ent initial datasets of I January 1979.
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Figure 6 Time series of total energy E = K + P for the first internal modes of wavenumber 1 (n = L, m = 1).

Observed time series of the same component is by a solid line without symbols,

The discrepancy in n = I between the simulations and
the observations can be traced to the misleading geo-

potential field near the top of the model atmosphere.

Figure 7 shows the observed 5-day means of geo-

potential height amplitude of n = 1 and 2 in the
Northern Hemisphere during 7-11 January 1979. The

same meddiona/-height cross sections in the simula-
tions for n = 1 are shown in Figure 8. Geopotential

height in these figures is multiplied by a common
dimensionless factor of (p/ps) _/a in order to remove

the basic density stratification effect. In Figures 7

and 8 the discrepancies in geopotential height fields in
the simulations are evident. During days 7-I 1 a large-

scale Pacific blocking with a high.low vortex pair

reaches its mature stage (Kung and Baker, 1986b).
Related to this Pacific blocking, a clear dipole structure

of n = 1 appears in the meridional cross section of
Figure 7 indicating two amplitude maxima at 45 °N

and 75 °N. The northern pole has its height ridge over

A/aska, and the southern pole has its trough over the

Pacific Ocean. The amplitude peaks appear at 500 mb.
Such a clear dipole structure is not observed for n = 2.

The basic structure of this Pacific blocking can be
described by superimposing the dipole structure of
n = 1 on that of n = 2. On the other hand, in simula-

tions, the dipole structure of n = 1 is not well handled.
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Figure 7 Meridional-height cross sections of geopotential height amplitude Z in the Northern Hemisphere
for wavenumbers n = I and 2. The values are observed 5-day means for 7 - 11 January 1979, and are weighted

by (p/ps) l'a to remove the density stratification effect.

The northern part of the amplitude maximum propagates

away into the stratosphere. This discrepancy of un-

realistic vertical propagation in simulations may

explain the systematic bias in the energy of the in-

creasing first internal vertical mode of n = 1 as shown

in Figure 6.

7 Concluding Summary

Comparative energetics are presented for four one-

month GLA GCM simulations for January 1979,

integrated from initial conditions at 0000 GMT 1

January 1979, These four numerical experiments

involve a combination of two different horizontal
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Figure 8 As in Figure 7, but for the four simulations during the same period.

grid resolutions and two sets of initial conditions

prepared by the GLA and GFDL. The effect of
increased horizontal resolution from the standard

4 ° x 5 ° latitude-longitude grid to the 2° x 2.5 ° grid,

and the effect of the initial datasets upon the climatic
drift of the model are examined using a recently

developed normal mode energetics scheme.

For one-month averages of the time integrations, it

is found that the gravity mode energy levels are

significantly reduced in the higher wavenumbers and

in the higher order internal vertical modes by the
increase in horizontal model resolution. The strong

zonal jet with the barotropic structure, and the intense
wave-mean interaction of kinetic energy from eddy to

zonal field in the simulations, as documented by

Tanaka et al. (1986) and Kung and Baker (1986a),

are not improved by the increase of model resolutions
or different initial conditions.

In the method of the normal mode expansion the

prediction errors of the model experiments may be

measured by the error norm between the two spectral
expansion coefficients of observed and simulated

atmosphere. It is found that the increase of the model

resolution reduces the prediction error in planetary

waves for n = 1 and 2 of the bazotropic component

and in synoptic waves for n = 5 of the baroclinic com-

ponent. It is also apparent that the misleading vertical
propagation of planetary waves into the model strato-

sphere results in a common bias of the prediction in
the first internal vertical component (m = 1) of wave-

number 1. This bias is related to a misrepresentation of

the Pacific blocking occurring at the predictability

limit of the model atmosphere.
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i. INTRODUCTION

Due to the dominance of blocking events in the Northern Hemisphere

winter, the ability of general circulation models (GCMs) to simulate

blocking is a major concern in the medium-range forecast. In our preceding

studies we compared energetics features under observed and simulated block-

ing situations. Kung and Baker (1986) identified an association of the

blocking development with the nonlinear wave-wave transfer of kinetic

energy from cyclone-scale to ultralong waves. Kung et al. (1989) noted the

existence of considerable energetics differences between the simulations

and the observations, and among simulations during blocking episodes.

Enough energy source is available in the simulations at the synoptic-scale

range, but the models tend to provide insufficient kinetic energy to

ultralong waves through the wave-wave interaction. Their failure in simu-

lating a realistic blocking can be attributed in part to inadequate grid

resolution. The 4°x5 ° longitude-latitude coarse resolution GCM results in a

downscale energy cascade, preventing a proper up-scale input of kinetic

energy. The 2°x2.5 ° high resolution GCM generates a relatively strong

blocking with a better wave-wave interaction for upscale input of kinetic

energy, but there are obvious spatial and temporal phase errors. The

energetics dipole structure of the observed blocking is also nearly absent

in the simulations. An orderly transfer of energy from the zonal baroclin-

ic component to the barotropic component of ultralong waves via synoptic-

scale conversion with observed blocking episodes (Tanaka and Kung 1988) is

either weak or unrecognizable in the simulations.

Aside from the importance of upscale kinetic energy input of wave-
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wave interaction, the association of large-scale baroclinic conversion with

blocking phenomena has been identified by Hansen and Chen (1982), Murakami

and Tomatsu (1965), Paulin (1970) and others. In this paper an additional

series of numerical simulations are examined to study the effects of a

realistic heating field of the ocean surface on the development of block-

ing. Three numerical simulations of the global atmosphere for the same

period of January 1979, as in our aforementioned preceding studies, were

performed using the 4°x5 ° and 2°x2.5 ° versions of the Goddard Laboratory for

Atmospheres (GLA) GCM, integrated from the GLA and Geophysical Fluid Dynam-

ics Laboratory (GFDL) initial datasets for 0000 GMT 1 January 1979 (Table

i). In contrast to previous simulations which used the daily January

climatology of the sea surface temperature (SST), those three simulations

used daily updating of observed SST data for January 1979, which was

developed by the fourth and fifth authors of this paper from in sicu (ship

and buoy) and satellite-retrieved data. A simulation reported in Kung et

al. (1989) using the high resolution GCM with the GLA initial conditions

and a January climatology SST is used in this study as the control run.

For each simulation examined in this study the development of block-

ing is identified, and its extent and pattern are analyzed. The improved

skill in predicting blocking development is described and discussed in

terms of the 500 mb anomaly correlation, mean-square error of geopotential

height, error kinetic energy, and phase angle and amplitude of the geopo-

tential height of ultralong waves.

2. SEA SURFACE TEMPERATURE ANALYSIS AND SIMULATION EXPERIMENTS

A global monthly SST analysis was performed at GLA based on in situ



(ship and buoy) and satellite-retrieved data. In this analysis the in sicu

data were used to define "benchmark" temperature values in regions of

frequent in si_u observations, and the satellite data were used to define

the SST pattern between these points. We used medians, rather than weight-

ed means, from the Comprehensive Ocean-Atmosphere Data Set (COADS) of Slutz

et al. (1985) to represent the in siru SST data in each 2°x2 ° latitude-

longitude grid box. Since the in siru data are subject to large sampling

errors, these SST data were used only when there were more than 5 observa-

tions in each grid box and the standard deviation was less than 3.5°C.

After eliminating questionable values, the COADS SSTs were transformed

through area-welghted average to produce in siru SSTs in the 4"x5 ° lati-

tude-longitude grid. The SST data retrieved from satellite radiances were

obtained by the multichannel technique of Susskind and Reuter (1985) using

the high resolution infrared sounder (HIRS) and the microwave sounding unit

(MSU) on Tiros-N. The approach at GLA is fundamentally different from the

current operational approach at the National Environmental Satellite Data

and Information Service (NESDIS) in that the surface and atmospheric

conditions are determined from the radiative transfer equations with an

iterative scheme. Soundings were done in the high spatial resolution mode

as described in Reuter et al. (1988). The basic retrieval system and

analysis technique are detailed in Susskind et al. (1984) and Susskind and

Reuter (1985).

The monthly mean field of the COADS SST and HIRS/MSU SSTs were

blended to the 4°x5 . grid by solving Poisson's equation, subject to appro-

priate internal and external boundary conditions (see Oort and Rasmusson,

1971). The technique is similar to the operational blend analysis used at

the National Meteorological Center (NMC) (Reynolds, 1988). The COADS SST



data were used to define benchmark values in the region of sufficient (25

or more) in situ observations, and the blended SSTs are determined in the

remaining regions by

V2(SST) - 6.

The forcing term 6 is defined by the Laplacian of the HIRS/MSU SSTs in

order to keep the shape of the field by satellite information in regions

with little or no in situ observations. In the analysis the domain extends

from 78"S to 78°N. The external boundary condition is specified by satel-

lite data at the poleward limits and in regions outside the domain. In

regions of sufficient in situ data the external boundary condition is set

equal to the in situ analysis. The solution was obtained iteratively when

the maximum absolute value of the individual grid point residuals was less

than 0.01°C. With the initial guess field given by the satellite data, the

convergence took less than 50 iterations. After the completion of the

analysis, the blended SSTs were interpolated to produce a dataset on a 2°x

2.5 ° grid. No further spatial or temporal filtering was applied to the

blended SSTs.

Figure i shows the anomaly pattern of the blended SST for January

1979. The NMC SST climatology (Reynolds, 1982) was used to compute the

anomalies. The anomaly pattern is shown in the region between 60°S and

60°N, although the climatology may not be reliable in the region south of

40°S (Reynolds, 1983). The satellite data have little influence on the

blended field in the Northern Hemisphere except in the tropical Pacific.

In the Southern Hemisphere, however, the blended field is Close to the

satellite observations due to the small influence of in situ data.

We have compared the large-scale characteristics of the blended SST

anomaly field with those two other fields: the SST from the NMC analysis,



which was based on in siCu data alone (Reynolds and Gemmill, 1984), and the

SST field derived using HIRS/MSU sounding alone. We used an empirical

orthogonal function (EOF) analysis to filter out high frequency noise. The

input data used in the EOF analysis are the normalized monthly SST anoma-

lies in the 4" latitude by 5" longitude grid in the latitudinal belt

between 40°S and 60°N for the period December 1978 to November 1979. The

latitude-time sections of the SST anomalies for each of these fields in the

eastern Pacific Ocean are shown in Fig. 2. Data used to represent these

figures are composed of the first five EOFs averaged in the eastern Pacific

(the dateline to the west coast of North America in the North Pacific and

150°W to 70"W in the South Pacific). The blended SST anomalies show

smoother large-scale variations and clearer seasonal trends than the in

si_u or satellite SST data alone.

For the GCM experiments, daily gridded SST fields were obtained by

linear interpolation of the monthly mean blended fields, assuming that the

observed monthly means are located in the middle of each month. The

assumption is valid because of the smallness of time variation in the SSTs

during winter months. Three simulation experiments (Exps. A, B and C) were

conducted for the period of 1-31 January 1979 with the coarse and high

resolution versions of GCMs (see Table I). The GLA and GFDL gridded

analyses of the First GARP (Global Atmospheric Research Program) Global

Experiment (FGGE) for 0000 GMT i January 1979 were used as the initial data

(see Daley et al. 1985; Kung and Baker 1986). The coarse resolution GCM

used in Exp A is the fourth-order global atmospheric model described by

Kalnay-Rivas et al. (1977) and Kalnay et al. (1983). The high resolution

version of the GCM used in Exps B and C is identical to the coarse resolu-

tion version with respect to physical parameterizations. Use of the GLA
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GCM and a description of GLA and GFDL initial datasets are detailed in our

preceding report (Kung et al. 1989) and not repeated here. One of four

simulations in Kung et al. (1989), which gave the best blocking simulation

with the January SST climatology is used as the control run to contrast the

simulations with a realistic SST field in this study. The control was run

using the high resolution GCM with the GLA initial data. The simulation

field analyzed in this study include twice-daily values of the circulation.

3. BLOCKING EPISODES

Following the same procedures of our preceding study (Kung et al.

1989), a blocking is recognized when the following index I at longitude A

is greater than 50m along a longitudinal sector:

I(A) - Z(A, 66°N) Z(A, 46°N)

where Z is the geopotential height at 500 mb. This criteria is based on

the common characteristic of diffluent and meridional types of blocking, in

both of which a quasi-meridional dipole is formed by a high pressure cell

poleward and a low pressure area equatorward (see LejenAs and Okland 1983).

In the additional scan for the cases of tilted orientation of meridional

dipole and cases of blocking which are partially out of the chosen latitud-

inal band, Z(A±5 °, 66°N) is substituted for Z(A, 66°N) in the above equa-

tion. The blocking identified in this method is verified by manual inspec-

tion of the flow pattern.

Figures 3-6 are longitude-time diagrams of identified blockings in

the three simulations and the control run. The horizontal segments in bold

lines represent the longitudinal sectors in which blockings are recognized.

The figures also contrast the simulated blockings with the observed block-
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ings by Kung and Baker (1986) which are shownwith dot-dashed lines. Table

I lists the periods of identified blocking episodes in the Northern Hemi-

sphere for the simulations and compares them with those of observed epi-

sodes. The control run (Fig. 6) is the only simulation in Kung et al.

(1989) with the mean January SST climatology that produced a realistically

strong Pacific blocking early in the month, and another blocking later,

toward the end of the month. However, the second blocking was weak and the

block was dislocated to the east of the observed block in the Atlantic. As

seen in Figs. 3-5, the improvement in simulating blocking using the realis-

tic SST field is obvious. All t_ree experiments (A, B and C) produced a

Pacific blocking early in the month, and an Atlantic blocking later in the

month. In Exp A the Atlantic blocking is weak and short-lived. This

apparently is the effect of the coarse resolution of GCM as noted in Kung

et ai.(1989). In Exps B and C (Figs. 4-5) with the high resolution GCM,

the Atlantic blocking is much stronger than in Exp A and more enduring.

Among the three simulations it appears that Exp B using the high resolution

GCM with GLA initial data produced the most realistic simulation of the

Pacific and Atlantic blockings, both in the period of occurrence and

longitudinal extent.

Comparing the simulated 500 mb circulations with the observed circu-

lation during a 5-day period of the developed Pacific blocking in Fig. 7,

Exp B shows the closest blocking pattern to the observation both in the

shape and the location of the block, which is consistent with the features

observed in the longitude-time diagrams. The general pattern of the entire

Northern Hemisphere circulation is also much better in Exps B and C than in

Exp A. During a similar 5-day period of the Atlantic blocking, Exp B again

shows a blocking pattern in closest agreement to the observation. However,



as indicated in Table I and Fig. 4, the development of the Atlantic block-

ing is delayed for several days in the simulation. Exp C produced a dipole

structure. However, the blocking is dislocated to the east, the jet is

more zonal, and the blocking period is shorter than in Exp B and in the ob-

servation (Table I and Fig. 5). Exp A, using the coarse resolution GCM,

indicates the formation of the Atlantic blocking, but the occurrence is

much delayed and the amplitude and longitudinal extent of the blocking are

also limited (Table I and Fig. 3).

Examination of simulated blocking episodes apparently indicates that

the simulation by a high resolution GCM, using a realistic SST field as a

boundary condition, is capable of generating a second major blocking event.

As clarified in Kung et al. (1989), the high resolution GCM is able to

realistically produce the first (Pacific) blocking episode through the

upscale kinetic energy input into the ultralong waves by the wave-wave

interaction. Since the development of blocking immediately follows the

initialization of the GCM, we may assume an existence of an adequate amount

and spatial distribution of baroclinic energy (see Tanaka and Kung 1988)

within the initial data. For the second (Atlantic) blocking event toward

the end of the simulation period, however, the required source of baroclin-

ic energy must be provided by some other means. This may suggest that the

realistic ocean surface heating has provided an adequate baroclinic energy

source during the simulation. Thus, the GCM is able to produce a realistic

second blocking, even after the effects of initialization are presumably

lost. However, we cannot determine if the improvement by the heating field

results from using the realistic initial SSTs, updating of the SSTs during

simulation, or their combined effects. This is a topic for further study.
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A. EFFECTSON EXTENDED-RANGE FORECAST SKILL

This series of GCM simulations for a single month indicates a con-

siderable predictability of the Northern Hemisphere winter blocking when a

realistic SST field is prescribed. Bengtsson (1981) found an increased

forecast skill in a blocking situation. Shukla (1981) and others (e.g.,

Holloway and West 1984) show that ultralong wave forecast possesses ex-

tended skill (up to 30-45 days) when compared to shorter waves. From this

perspective it is not surprising that the improved 30-day GCM simulations

in this study have been able to obtain two realistic blockings in success-

ion over the Pacific and Atlantic. To examine the forecast skill of the

simulations, the anomaly correlations of the 500 mb geopotential field in

the North Pacific sector (30°-86°N, 120°E-120°W) and the North Atlantic

sector (30°-86°N, IO0°-5°W) are presented in Figs. 9 and I0 for Exps A and

B and the control run. The anomaly correlation of Exp B can be seen to

represent the group of high resolution simulations with Exps B and C.

Both Figs. 9 and I0 show that following the initial state there is

high forecast skill for all three simulations in both the Pacific and

Atlantic sectors. Although the skill scores drop in mid-January, toward

the end of January the relatively high skill of Exp B becomes apparent with

the development of a realistic Atlantic blocking. Exp A shows some insig-

nificant skill at the end of January in association with a rather limited

blocking with the coarse resolution GCM. Throughout the simulation period,

Exp B exhibits a relatively high anomaly correlation, while the control

run, without a realistic SST field, shows a marked deterioration toward the

end of the month.

As discussed in our preceding reports (Kung and Baker 1986; Kung et

al. 1989), during the major Northern Hemisphere winter blockings, the local
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characteristics of the circulation, in and around the blocked region are

manifestations of wavenumbers i and 2. Since the anomaly correlations

shown in Figs. 9 and I0 are for the summation of all zonal wavenumbers, the

high skill scores later in the month is obtained only when the ultralong

waves dominate the Northern Hemisphere circulation during the Atlantic

blocking.

The forecast skill of ultralong waves may be examined by separating

zonal wavenumbers n-i and 2 from other wavenumbers in the error growth of

geopotential height and error kinetic energy during the simulation period.

The former is expressed in terms of a root-mean square error in the 500 mb

geopotential height field in Fig. ii, and the latter in terms of a mean-

square error in the 500 mb wind field in Fig. 12. Both are taken in the

38°-70"N latitudinal band. Figures ii and 12 indicate that the ultralong

waves (n-l-2) in all of the simulations show high skill relative to the

persistence up to 17-18 days. Beyond that, Exps B and C, using the high

resolution GCM, still show good skill toward the end of the month. How-

ever, for shorter waves of n-3-10, the forecast skill is only recognizable

for the initial 7-10 days of the simulation. Examination of the forecast

skill of the simulations clearly suggests that the improved blocking

simulation with the realistic SST field, particularly the generation of the

second blocking event in the Atlantic toward the end of the one-month

period, is due to the improved prediction of the ultralong waves.

Figure 13 illustrates the n-l-2 trough-ridge diagram during January

1979 with the 500 mb geopotential field, in which both the amplitude and

phase angle of the wave are inferred through the period. During the

development stage of the Pacific blocking both n-i and 2 of simulations

come in phase with the observations, indicating a reasonable blocking
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development in all three simulations. It is noted, however, that only in

the observations does the n-2 amplitude reach a sharp peak which is more

than twice that of n-l. All three of the simulations show a much smaller

n-2 amplitude than the observations before the maturing stage of the

Pacific blocking. It is also noteworthy that, despite a realistic Pacific

blocking simulated in all three experiments, the n-I amplitude in Exp B is

much larger than that of the observations and of Exps A and C. There is a

considerable deviation of the n-2 phase angle and amplitude during the

Atlantic blocking in all simulations from the observations. The n-I

simulations are much better in this respect during the Atlantic blocking.

However, the amplitudes of n-i simulations are smaller than the observa-

tions. This is consistent with the fact that the successful simulations of

the Atlantic blocking in Exps B and C still lack the observed strength (see

Fig. 8). It is apparent that the improved simulation of the Atlantic

blocking episode is due to the more realistic behavior of n-I in the later

period. Regardless, this study indicates that further improvement is

needed, as shown by the smaller amplitude of n-I than in the observations.

5. CONCLUDING REMARKS

Simulation experiments using the high resolution GLA GCM with a

realistic ocean surface heating field are capable of generating two succes-

sive major blocking events in the Pacific and Atlantic during January 1979.

In connection with the development of the second blocking episode in the

Atlantic toward the end of the month, this study suggests that the realis-

tic heating field has provided an adequate baroclinic energy source, which

in turn, was transferred into the ultralong waves through upscale wave-wave

interaction of kinetic energy.
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The success in simulating the blocking formation, as shown in this

study, is due to the improved forecast skill of the ultralong waves. The

improved simulation of the n-I phase angle in particular contributes in

this regard. It should be recognized, however, that the individual wave-

numbers n-i and 2 still have recognizable deviations from those of the

observations.

Although the improved blocking simulation has resulted from the use

of a realistic heating field, we cannot determine in this study if it is

due to the improved initial field of SSTs, their realistic time variations

during the simulation, or their combined effect. This may be studied

through a detailed analysis of the internal energy flow, and preferrably in

an additional series of simulations with various initial times. It is

important to note that only one initial state (I January 1979) is involved

in this series of simulations. As such, the results can not be general-

ized. On the other hand, they are encouraging enough to suggest that

additional experiments be run. The Dynamical Extended Range Forecasting at

NMC clearly establishes the dependency of forecast on the initial regime of

flow (Tracton et al. 1989), but blocking episodes were not well simulated.

Such an experiment also seems an ideal testbed for future study.

If the results of future blocking simulations indicate the importance

of updating SSTs during the model integration, then one possible conclusion

would be that a coupled ocean-atmosphere model is critical for significant-

ly improving extended-range forecast skill. Another view would be that

what is being tested is the upper limit of what would be possible with a

coupled ocean-atmosphere model, since updating the observed SSTs during the

atmospheric model integration may imply a correct ocean model SST predic-

tion.
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TABLE I. Three simulation experiments and the control run of the January

1979 global atmosphere with GLA GCM, and blocking episodes identified in

the observed and simulated Northern Hemisphere circulation.

GCM grid 1/1/79 0000 GMT

Run (latitude x longitude) initial data

Blocking period

(day/mo/yr)

Observation 3/1-14/1/79

12/1-29/1/79

Exp A 4°x5 ° GLA 3/1-16/1/79

27/1-30/1/79

Exp B 2°x2.5 ° GLA 3/1-16/1/79

18/1-31/I/79

Exp C 2°x2.5 ° GFDL 7/1-14/1/79

16/1-25/1/79

Control 2°x2.5 ° GLA 3/1-12/1/79

21/1-25/1/79

28/1-30/1/79



FIGURES

Figure i. January 1979 patterns of blended SST anomaly. Contour interval

is 0.5°C. Positive anomalies are shaded.

Figure 2. Latitude-time sections of SST anomaly in the eastern Pacific

Ocean for (a) NMC analysis SST based on in siru measurements only,

(b) HIRS/MSU SST and (c) GLA blended SST. Contour interval is 0.2°C.

Positive anomalies are shaded.

Figure 3. Longitude-time diagram of blocking in Exp A (bold lines) as

identified in the daily 0000 GMT 500 mb charts. Dot-dashed lines

are for the observed blocking after Kung and Baker (1986).

Figure 4. As in Figure 3, but for Exp B.

Figure 5. As in Figure 3, but for Exp C.

Figure 6. As in Figure 3, but for the control run.

Figure 7. Observed and simulated 500 mb circulation during a 5-day period

of the developed Pacific blocking.

Figure 8. As in Figure 7, but for the Atlantic blocking.

Figure 9. Anomaly correlations of the 500 mb geopotential field in the

North Pacific sector.

Figure i0. As in Figure 9, but for the North Atlantic sector.

Figure Ii. Root-mean square error of 500 mb geopotential height for ultra-

long (n-l-2) and synoptic-scale (n-3-10) waves in the 38°-70 ° lati-

tudinal band.

Figure 12. As in Figure Ii, but for the 500 mb error kinetic energy (mean-

square error of the wind).

Figure 13. Trough-ridge diagram of n-i and 2 with 500 mb geopotential

height during January 1979 in the 54-70°N band. The contour

spacing is 50m and negative contour lines are dashed.
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